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Abstract. TOPMODEL, a simple physically based conceptual model, has been widely
applied to various water resource investigations. Previous studies of the hydraulic
transmissivity function with depth indicate that an exponential function alone may not be
appropriate. Recent work suggests that a first-order hyperbolic function can provide
improved simulations of base flow recession in the context of TOPMODEL. We present a
generalized power function for a range of possible cases and apply this function to the
TOPMODEL concepts. The specific function that is most applicable is location
dependent.

1. Introduction

The development of TOPMODEL [Beven and Kirkby, 1979]
has made major contributions to hydrological modeling. It has
been widely used and applied to various water resource theo-
ries, developments, and applications [e.g., Beven and Wood,
1983; Beven et al., 1984; Wood et al., 1990; Sivapalan and Wood,
1990; Wolock and Hornberger, 1991; Quinn and Beven, 1993;
Miller and Kim, 1996].

Soil permeability has been assumed to vary with depth as a
prescribed function in the TOPMODEL concepts. In the orig-
inal form of TOPMODEL [Beven and Kirkby, 1979] the expo-
nential profile is assumed for the subsurface transmissivity

T 5 T0 exp ~2d! (1)

where T is the local subsurface transmissivity and T0 is the
local subsurface transmissivity at saturation. The relative stor-
age deficit d is defined as

d 5
D
m (2)

where D is the local soil moisture storage deficit and m is a
scaling parameter describing the decrease in T with depth.

Recent work by Ambroise et al. [1996] generalized the
TOPMODEL concept by incorporating different transmissivity
profiles within the original TOPMODEL formulation to give
two other alternative forms of subsurface transmissivity pro-
files:

T 5 T0~1 2 d! (3a)

T 5 T0~1 2 d!2 (3b)

where (3a) represents linear transmissivity and (3b) represents
parabolic transmissivity with depth. These profiles are incor-
porated into TOPMODEL [Ambroise et al., 1996], resulting in
an improved range of possible profiles for describing subsur-

face transmissivity. In this paper we present a fully generalized
power function for the transmissivity profile and apply this
function to the generalized TOPMODEL concepts based on
Ambroise et al. [1996].

2. Generalized Power Function
for Subsurface Transmissivity

If we assume a general power function for local subsurface
transmissivity T with local soil storage deficit d, then

T 5 T0S 1 2
d

nD
n

(4)

Our nondimensional scale parameter n is assumed to be uni-
form throughout the basin and generalizes the solution pro-
vided by Ambroise et al. [1996]. From (2) the maximum storage
deficit is denoted by the product of the two parameters n and
m. By allowing n to range from 1 to infinity a generalized
power function emerges and contains the full range of poten-
tial transmissivities (i.e., linear to exponential). For this defi-
nition to hold the ratio d/n (or D/mn) must be less than or
equal to unity. For increasing values of the scale parameter n
the transmissivity profile is given as

Linear

n 5 1 T 5 T0~1 2 d!

Hyperbolic

n 5 2 T 5 T0S 1 2
d

2D
2

(5)
Cubic

n 5 3 T 5 T0S 1 2
d

3D
3

Exponential

n 5 ` T 5 T0 exp ~2d!

As can be seen from (4) and (5), the local transmissivity is a
generalized form of the power function and can be used in
TOPMODEL-related applications. By setting the scale param-
eter n equal to 1, 2, and infinity the linear, hyperbolic, and
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exponential cases of the generalized power equation are de-
rived. These three transmissivity functions have been used and
are discussed in the literature [e.g., Beven and Kirkby, 1979;
Beven, 1984; Ambroise et al., 1996].

The shape of the transmissivity profile is controlled by the
value given to the scale parameter n in (4). Figure 1 indicates
that for n equal to 1 and infinity, two extremes for normalized
local subsurface transmissivity T/T0 are represented. As n
increases in value from 1 to about 16, T/T0 closely approxi-
mates the exponential profile. However, for n between 1 and 2,
there is a significant gap, suggesting the need for testing a
noninteger-based scale parameter in TOPMODEL applications.

3. TOPMODEL-Related Derivation
The following TOPMODEL-related derivations are based

on the conceptual developments of TOPMODEL [Beven and
Kirkby, 1970; Ambroise et al., 1996]. We present here an ex-
tended generalization of TOPMODEL to the special cases of
n equal to 1, 2, and infinity, as given by Ambroise et al. [1996].

By assuming that the local water table is parallel to the local
topography and that the steady state assumption for downslope
discharge can be assumed as a power function,

T0 tan b~1 2
d

n
!n 5 aR (6)

where a is the drainage area per unit contour for a specific
location within a basin, R is the effective local recharge, and b
the local slope. By rearranging (6) in terms of the effective
local recharge R and defining a soil topographic index j [Beven,
1986] we have

R 5
~1 2

d

n
!n

j
(7)

with

j 5
a

T0 tan b
(8)

Stated in terms of the relative storage deficit,

d 5 n~1 2 În Rj! (9)

and the integrated average d# over the entire drainage A is
defined as

d# 5
1
A E

A

n~1 2 În Rj! 5 nS 1 2
1
A E

A

În RjD (10)

If we assume for now that the local recharge R is uniform over
the drainage basin, then

d# 5 nS 1 2
În R
A E

A

În jD (11)

and by substituting (7) into (11), we have

d# 5 n1 1 2
~1 2

d

n
!

În j

1
A E

A

În j2 (12)

with

g 5
1
A E

A

În j (13)

where g represents the spatial average of the soil topographic
index. Upon rearranging (12) we find that

1 2
d#

n

1 2
d

n

5
g

În j
(14)

Local saturation (d # 0) results in the inequality

1 2
d#

n $
g

În j
(15a)

or

În j $
g

1 2
d#

n

(15b)

Equations 15a and 15b indicate the form of the basin aver-
age saturation condition for the generalized power function for
subsurface transmissivity. As shown by Ambroise et al. [1996],
the alternative transmissivity profiles lead to the use of alter-
native soil topographic parameters in place of the original
ln(a/tan b). Here (a/tan b)1/n can be used to map the satura-
tion in a watershed.

The total drainage Qb is calculated as

Qb 5 Q0~1 2
d#

n
!n (16)

where discharge at saturation, Q0, is defined as,

Figure 1. The normalized local subsurface transmissivity
T/T0 is plotted against D/mn (or d/n), the ratio of the local
soil storage deficit d, and scale parameter n. The linear case is
represented when n 5 1, and the exponential case is when n
approaches infinity. Values of n between 1 and 2 indicate that
a large gap occurs as d/n approaches unity.
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Q0 5
A
gn 5

O
j51

k

l jaj

gn (17)

and l j and aj are the jth channel reach contour and area within
basin A, respectively. By applying the law of mass conserva-
tion,

Qb 5 Am~dd# /dt! (18)

and the chain rule we have the time derivative for base flow,

dQb

dt 5
dQb

dd#
dd#

dt 5
Qb

Am
dQb

dd#
(19)

Taking the derivative of (16) with respect to the mean soil
moisture deficit d# results in

dQb

dd#
5 2Q0~1 2

d#

n
!n21 5 2

Qb

(12 d#

n
)

(20)

or

S 1 2
d#

nD 5 În Qb

Q0
(21)

Substituting (21) into (20) gives

dQb

dd#
5 2Qb În Q0

Qb
(22)

and inserting (22) into (19) results in

dQb

dt 5 2
Qb

2

Am În Q0

Qb
(23a)

or

dQb

Qb
~221/n! 5 2

În Q0

Am dt (23b)

Integrating (23b) over time period t with a specific (or initial)
discharge Qs has the general form

Qb
1/n21 2 Qs

1/n21

1
n

2 1
5 2

Q0
1/n

Am t (24)

If we recognize that n 5 1 is a special case [Ambroise et al.,
1996], we can now determine the form of the generalized base
flow. Let

t s 5
n

n 2 1
Qs

1/n21

Q0
1/n Am (25)

t 5 t s 1 t (26)

then (25) simplifies to

Qb 5 Qs~t/ts!
n/~12n! (27)

Figure 2 demonstrates the influence of parameter n on the
normalized flow. The small value of n results in a rapid decay
of flow, and the large value of n approximates an exponential
form which has the slowest decay in the transmissivity profile
family when other parameters are the same. In this log-log plot
the slope is n/(1 2 n), and it asymptotically approaches 21

(the result of the exponential profile) as n becomes infinite.
When transforming the recession curves to functions of time,

Qb
1/n21 5 at 1 Qs

1/n21 (28)

and the constant slope is

a 5 S 1 2
1
nD Q0

1/n

Am 5 S 1 2
1
nD A1/n21

mg
(29)

Equation 29 gives us a way to determine the scale parameter
n . Terrain analyses can indicate the catchment area A and
related topographic index j. When the type of base flow reces-
sion curve and its slope a are known, the only unknowns are
the parameters m and n . If we treat mn as the maximum water
deficit, a measurable quantity dependent on the soil porosity,
(29) can be solved numerically for n . The modification of
making mn a measurable quantity related to porosity is much
more realistic than just treating it as a scale parameter. The full
behavior of the range of values for n needs to be further
understood. The values of n between 1 and 2 are of particular
interest and are currently being studied by the authors.

4. Conclusion
A generalized power function for subsurface soil transmis-

sivity profile has been presented. TOPMODEL-related deri-
vations have been developed based on the generalized power
function. In this derivation, previous transmissivity profiles are
viewed as special cases (or subsets) of the generalized function.
Further sensitivity analyses are needed to test this theory and
applicability.
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Figure 2. Normalized flow change with time using different
parameter n . In this log-log plot the slope is n/(1 2 n), and
it asymptotically approaches 21 as n becomes infinite.
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